1. NAME OF THE MEDICINAL PRODUCT

Ibuprofen 2care4 600 mg film-coated tablets

2. QUALITATIVE AND QUANTITATIVE COMPOSITION

Each film-coated tablet contains 600 mg ibuprofen
Excipients: lactose monohydrate 9.28 mg
For the full list of excipients, see section 6.1.

3. PHARMACEUTICAL FORM

Film-coated tablet

White coloured, capsule shaped, biconvex, 19 x 8.8mm, film coated tablets, plain on both sides

4. CLINICAL PARTICULARS

4.1 Therapeutic indications

Rheumatoid arthritis, arthrosis.

4.2 Posology and method of administration

The treatment should start with the lowest dose anticipated to be effective, which can subsequently be adjusted, depending on the therapeutic response and any undesirable effects. In long-term treatment a low maintenance dose should be the aim.

Undesirable effects may be minimised by using the lowest effective dose for the shortest duration necessary to control symptoms (see section 4.4).

Adults

Rheumatic diseases
One 600 mg tablet three times daily. An interval of at least 4-6 hours should be allowed between doses. For more rapid relief of the morning stiffness, the first dose may be given on a fasting stomach. The dose should be reduced in the event of renal insufficiency. The recommended dose of Ibuprofen 2care4 is 1200 – 1800 mg daily in divided doses. Some patients can be maintained on 600-1200 mg daily.

The maximum dose in a 24-hour period is 2,400 mg.

Paediatric population

Adolescents over 12 years of age (>40 kg):
The recommended dose is 20 mg/kg to a maximum of 40 mg/kg body weight daily in 3 to 4 doses. There are other dosage forms which may be more suitable to attain the required posology in this age and body weight group.

Ibuprofen 2care4 600 mg film-coated tablets is contraindicated in children and adolescents younger than 12 years of age due to lack of possibility of correct dosing.

Elderly

The elderly are at increased risk of serious consequences of adverse reactions. If an NSAID is considered necessary, the lowest effective dose should be used and for the shortest possible duration. The patient should be monitored regularly for GI bleeding during NSAID therapy. If renal or hepatic function is impaired, dosage should be assessed individually.
Renal impairment
Caution should be taken with ibuprofen dosage in patients with renal impairment. The dosage should be assessed individually. The dose should be kept as low as possible and renal function should be monitored (see sections 4.3, 4.4 and 5.2).

Hepatic impairment
Caution should be taken with dosage in patients with hepatic impairment. The dosage should be assessed individually and the dose should be kept as low as possible (see sections 4.3, 4.4 and 5.2).

Method of Administration
Take Ibuprofen 2care4 tablets with a glass of water. Ibuprofen 2care4 tablets should be swallowed whole and not chewed, broken, crushed or sucked on to avoid oral discomfort and throat irritation.

It is recommended that patients with a sensitive stomach take Ibuprofen 2care4 with food.

4.3 Contraindications

Hypersensitivity to the active substance or any excipients listed in section 6.1.

Active gastric or duodenal ulcer or a history of recurrent gastrointestinal ulcer/bleeding (two or more clear episodes of demonstrable ulceration or bleeding).

Severe hepatic failure.

Severe heart failure (NYHA Class IV).

Severe renal failure (glomerular filtration below 30 mL/min).

Conditions involving an increased tendency to bleeding. Gastrointestinal bleeding or perforation in connection with previous treatment with NSAIDs.

The third trimester of pregnancy.

Because of cross-reactions, Ibuprofen 2care4 should not be given to patients who have developed symptoms of asthma, rhinitis or urticaria after taking aspirin or other NSAIDs.

Lupus erythematosus

Dishaematopoiesis of unknown origin

Patients with severe dehydration (caused by vomiting, diarrhoea or insufficient fluid intake)

Children and adolescents because this tablet strength is not suitable due to lack of possibility of correct dosing.

4.4 Special warnings and precautions for use

General precautions
Undesirable effects may be minimised by using the lowest effective dose for the shortest duration necessary to control symptoms (see section 4.2, and gastrointestinal and cardiovascular effects below).

As with other NSAIDs, ibuprofen may mask the signs of infection.

There is some evidence that drugs which inhibit cyclo-oxygenase/prostaglandin synthesis may cause impairment of female fertility by an effect on ovulation. This is reversible on withdrawal of treatment.
Ibuprofen 2care4 tablets contain lactose monohydrate and should not be given to patients with rare hereditary problems of galactose intolerance, Lapp lactase deficiency or glucose-galactose malabsorption.

Ibuprofen 2care4 should only be administered under strict consideration of the benefit-risk ratio in the following case: Congenital disturbance of porphyrin metabolism (e.g. acute intermittent porphyria).

Special care has to be taken immediately after major surgical interventions.

Cardiovascular effects

Appropriate monitoring and advice are required for patients with a history of hypertension and/or mild to moderate heart failure as fluid retention and oedema have been reported in association with NSAID therapy.

Clinical studies suggest that use of ibuprofen, particularly at a high dose (2400 mg/day) may be associated with a small increased risk of arterial thrombotic events (for example myocardial infarction or stroke). Overall, epidemiological studies do not suggest that low dose ibuprofen (e.g. ≤ 1200 mg/day) is associated with an increased risk of arterial thrombotic events.

Patients with uncontrolled hypertension, congestive heart failure (NYHA II-III), established ischaemic heart disease, peripheral arterial disease, and/or cerebrovascular disease should only be treated with ibuprofen after careful consideration and high doses (2400 mg/day) should be avoided.

Careful consideration should also be exercised before initiating long-term treatment of patients with risk factors for cardiovascular events (e.g. hypertension, hyperlipidaemia, diabetes mellitus, smoking), particularly if high doses of ibuprofen (2400 mg/day) are required.

Caution is required when treating patients with a history of hypertension and/or heart failure, since fluid retention and oedema have been reported in connection with NSAID treatment.

Gastrointestinal bleeding, ulceration and perforation

There is a strong link between the dose and severe gastrointestinal bleeding. The concomitant administration of ibuprofen and other NSAIDs, including selective cyclooxygenase-2 (COX-2) inhibitors should be avoided.

Elderly patients are at greater risk of experiencing undesirable effects when treated with an NSAID, especially gastrointestinal bleeding and perforation, which may be fatal.

Potentially fatal gastrointestinal bleeding, ulceration and perforation have been reported in connection with treatment with all types of NSAID and have occurred at any time during treatment, with or without warning symptoms or previous episodes of severe gastrointestinal events.

The risk of gastrointestinal bleeding, ulceration or perforation is higher at increased doses of NSAIDs in patients with a history of ulcer, especially if complicated with bleeding or perforation (see section 4.3), and in the elderly. Patients with the above-mentioned risk factors should commence treatment at the lowest possible dose.

Treatment with mucosa-protective drugs (e.g. misoprostol or proton pump inhibitors) should be considered for these patients as well as for patients on low doses of a acetylsalicylic acid or other drugs that may increase the risk of undesirable gastrointestinal effects (see below and section 4.5).

Patients with a history of gastrointestinal reactions, particularly elderly patients, should be told to watch out for any unusual abdominal symptoms (especially gastrointestinal bleeding), particularly at the start of the treatment and, if such symptoms occur, to seek medical help.
Caution should be exercised in patients receiving concomitant medication which could increase the risk of ulceration or bleeding, such as oral corticosteroids, anticoagulants such as warfarin, selective serotonin re-uptake inhibitors or antiplatelet drugs such as aspirin (see section 4.5).

Treatment with ibuprofen should be withdrawn if the patient suffers from gastrointestinal bleeding or ulceration.

NSAIDs should be given with care to patients with a history of gastrointestinal disease, e.g. ulcerative colitis and Crohn’s disease, as these conditions may be exacerbated (see section 4.8).

Renal effects
Caution should be exercised with regard to dehydrated patients.

As with other NSAIDs, the long-term administration of ibuprofen has resulted in papillary necrosis and other pathological changes in the kidney. Renal toxicity has also been seen in patients in whom renal prostaglandins have a compensatory role in the maintenance of normal renal perfusion. In these patients the administration of an NSAID may cause a dose-dependent reduction in prostaglandin formation and, in the second place, in renal blood flow, which may cause kidney failure. Those who are at greatest risk of this are patients with renal impairment, heart failure, hepatic dysfunction, the elderly and patients on diuretics or ACE inhibitors. The symptoms are normally reversible following withdrawal of the NSAID.

Patients with gastrointestinal problems, SLE, haematological or coagulation disorders and asthma should be treated with care and be closely monitored during NSAID treatment, since their condition may be exacerbated by the NSAID.

There is a risk of renal impairment in dehydrated children and adolescents.

Hematological Effects
Ibuprofen can inhibit platelet aggregation, resulting in prolongation of bleeding time.

Respiratory disorders
Bronchospasm may be precipitated in patients suffering from or with a previous history of bronchial asthma or allergic disease.

Dermatological effects
Severe skin reactions, some with a fatal outcome, such as exfoliative dermatitis, Stevens-Johnson syndrome and toxic epidermal necrolysis, have been reported very rarely in connection with the use of NSAIDs (see section 4.8). The risk of such reactions occurring is greatest at the start of the treatment, the majority of cases occurring during the first month. Treatment with ibuprofen should be withdrawn at the first signs of skin rash, mucosal damage or other signs of hypersensitivity.

Prolonged use of any type of painkiller for headaches can make them worse. If this situation is experienced or suspected, medical advice should be obtained and treatment should be discontinued. The diagnosis of medication overuse headache (MOH) should be suspected in patients who have frequent or daily headaches despite (or because of) the regular use of headache medications. In general the habitual intake of analgesics, particularly the combination use of different analgesic substances, may cause permanent renal damage and a risk of renal failure (analgesics nephropathy).

During treatment with ibuprofen, some cases with symptoms of aseptic meningitis, such as stiff neck, headache, nausea, vomiting, fever or disorientation have been observed in patients with existing autoimmune disorders (such as systemic lupus erythematosus, mixed connective tissue disease).

Exceptionally, varicella can be at the origin of serious cutaneous and soft tissues infectious complications.

To date, the contributing role of NSAIDs in the worsening of these infections cannot be ruled out. Thus, it is advisable to avoid use of Ibuprofen 2care4 in case of varicella.
4.5 Interaction with other medicinal products and other forms of interaction

The following combinations with Ibuprofen 2care4 should be avoided:

The dicumarol group: NSAIDs may increase the effect of anticoagulants such as warfarin Experimental studies show that ibuprofen reinforces the effects of warfarin on bleeding time. NSAIDs and the dicumarol group are metabolised by the same enzyme, CYP2C9.

Anti-platelet agent: NSAIDs should not be combined with antiplatelet agents such as ticlopidine due to the additive inhibition of the platelet function (see below).

Methotrexate: NSAIDs inhibit the tubular secretion of methotrexate and some metabolic interaction with reduced clearance of methotrexate may also occur as a result. Accordingly, in high-dose treatment with methotrexate one should always avoid prescribing NSAIDs (see below).

Acetylsalicylic acid: Concomitant administration of ibuprofen and acetylsalicylic acid is not generally recommended because of the potential of increased adverse effects.

Experimental data suggest that ibuprofen may competitively inhibit the effect of low dose acetylsalicylic acid on platelet aggregation when they are dosed concomitantly. Although there are uncertainties regarding extrapolation of these data to the clinical situation, the possibility that regular, long-term use of ibuprofen may reduce the cardioprotective effect of low-dose acetylsalicylic acid cannot be excluded. No clinically relevant effect is considered to be likely for occasional ibuprofen use (see section 5.1).

Cardiac glycosides: NSAIDs can exacerbate heart failure, reduce glomerular filtration and increase plasma cardiac glycoside (e.g. digoxin) levels.

Mifepristone: A decrease of the efficacy of the medicinal product can theoretically occur due to the antiprostaglandin properties of non-steroidal anti-inflammatory drugs (NSAIDs) including acetylsalicylic acid. Limited evidence suggests that co-administration of NSAIDs on the day of prostaglandin administration does not adversely influence the effects of mifepristone or the prostaglandin on cervical ripening or uterine contractility and does not reduce the clinical efficacy of medical termination of pregnancy

Pemetrexed: There is an increased risk of its toxicity by decreased renal clearance. In patients with an impaired renal function displaying a creatinine clearance between 45-80 ml/min, this combination is to be avoided. In patients with normal renal function, a precaution for use is sufficient based on laboratory tests of the renal function.

Sulphonylureas: There are rare reports of hypoglycaemia in patients on sulphonylurea medications receiving ibuprofen.

Zidovudine: There is evidence of an increased risk of haemarthroses and haematoma in HIV(+) haemophiliacs receiving concurrent treatment with zidovudine and ibuprofen.

The following combinations with Ibuprofen 2care4 may require dose adjustment:

NSAIDs can reduce the effect of diuretics and other antihypertensive agents.

NSAIDs may reduce the excretion of aminoglycosides. Children: Care should be taken during concomitant treatment with ibuprofen and aminoglycosides.

Lithium: Ibuprofen reduces the renal clearance of lithium, as a result of which serum lithium levels may rise. The combination should be avoided unless frequent checks of serum lithium can be carried out and a possible reduction in the dose of lithium made.
ACE inhibitors and angiotensin-II antagonists:
There is an increased risk of acute renal failure, usually reversible, in patients with renal impairment (e.g. dehydrated and/or elderly patients) when treatment with ACE inhibitors or angiotensin-II antagonists is given at the same time as NSAIDs, including selective cyclooxygenase-2 inhibitors. The combination should, therefore, be given with care to patients with renal impairment, especially elderly patients. Patients should be adequately hydrated and a check of renal function should be considered after the initiation of combination treatment and at regular intervals during treatment (see section 4.4).

Beta-blockers: NSAIDs counteract the antihypertensive effect of beta-adrenoceptor blocking drugs.

Selective serotonin re-uptake inhibitors (SSRIs):
SSRIs and NSAIDs each entail an increased risk of bleeding, e.g. from the gastrointestinal tract. This risk is increased by combination therapy. The mechanism may possibly be linked to reduced uptake of serotonin in the platelets (see section 4.4).

Cyclosporine: The concomitant administration of NSAIDs and cyclosporine is thought to be capable of increasing the risk of nephrotoxicity due to decreased synthesis of prostacyclin in the kidney. Accordingly, in the event of combination treatment, renal function must be monitored closely.

Captopril: Experimental studies indicate that ibuprofen counteracts the effect of captopril on sodium excretion.

Colestyramine: The concomitant administration of ibuprofen and colestyramine retards and reduces (by 25%) the absorption of ibuprofen. These drugs should be given at an interval of at least 2 hours.

Thiazides, thiazide-related preparations and loop diuretics: NSAIDs can counteract the diuretic effect of furosemide and bumetanide, possibly through inhibition of prostaglandin synthesis. They can also counteract the antihypertensive effect of thiazides.

Tacrolimus: Concomitant administration of NSAIDs and tacrolimus is thought to be capable of increasing the risk of nephrotoxicity due to decreased synthesis of prostacyclin in the kidney. Accordingly, in the event of combination treatment, renal function should be monitored closely.

Methotrexate: The risk of a potential interaction between an NSAID and methotrexate should also be taken into account in connection with low-dose treatment with methotrexate, especially in patients with renal impairment. Whenever combination treatment is given, renal function should be monitored. Caution should be exercised if both an NSAID and methotrexate are given within 24 hours, as the plasma levels of methotrexate can increase, resulting in increased toxicity (see above).

Corticosteroids: Concomitant treatment gives rise to an increased risk of gastrointestinal ulceration or bleeding.

Antiplatelet drugs: Increased risk of gastrointestinal bleeding (see above).

CYP2C9 Inhibitors: Concomitant administration of ibuprofen with CYP2C9 inhibitors may increase the exposure to ibuprofen (CYP2C9 substrate). In a study with voriconazole and fluconazole (CYP2C9 inhibitors) an increased S(+)-ibuprofen exposure by approximately 80 to 100% has been shown. Reduction of the ibuprofen dose should be considered when potent CYP2C9 inhibitors are administered concomitantly, particularly when high-dose ibuprofen is administered with either voriconazole or fluconazole.

Moclobemide: Enhances the effect of ibuprofen.

Phenytoin: The concomitant use of ibuprofen with phenytoin may increase serum levels of phenytoin. A check of serum-phenytoin is recommended.
Ritonavir: May increase the plasma concentrations of NSAIDs.

Probenecid or sulfinpyrazone: May cause a delay in the elimination of ibuprofen. The uricosuric action of these substances is decreased.

Quinolone antibiotics: Patients taking NSAIDs and quinolones may have an increased risk of developing convulsions.

Alcohol, bisphosphonates and oxpentifylline (pentoxyfylline): May potentiate the GI side-effects and the risk of bleeding and ulceration.

Interaction studies have only been performed on adults.

4.6 Fertility, pregnancy and lactation

Pregnancy
Inhibition of prostaglandin synthesis may adversely affect the pregnancy and/or embryo/foetal development. Data from epidemiological studies suggest an increased risk of miscarriage and of cardiac malformation gastrochisis after the use of a prostaglandin synthesis inhibitor in early pregnancy. The absolute risk of cardiovascular malformation was increased from less than 1% up to approximately 1.5%. The risk is believed to increase with dose and duration of therapy. In animals the administration of a prostaglandin synthesis inhibitor has been shown to result in increased pre- and post-implantation losses and embryo/foetal lethality. In addition, increased incidences of various malformations, including cardiovascular, has also been reported in animals given a prostaglandin synthesis inhibitor during the organogenetic period. During the first and second trimesters of pregnancy, Ibuprofen 2care4 should not be given unless clearly necessary. If Ibuprofen 2care4 is used by a woman attempting to conceive or during the first and second trimester, the dose should be kept as low and duration of treatment as short as possible.

During the third trimester, all prostaglandin synthesis inhibitors may expose the foetus to:
- Cardiopulmonary toxicity (with premature closure of the ductus arteriosus and pulmonary hypertension),
- Renal dysfunction, which may progress to renal failure with oligohydramnios.

The mother and the neonate, at the end of pregnancy, to:
- Prolongation of bleeding time,
- Inhibition of uterine contractions, resulting in delayed or prolonged labour.

Consequently Ibuprofen 2care4 is contraindicated during the last trimester of pregnancy.

Breast-feeding
Ibuprofen is excreted in breast milk, but with therapeutic doses during short term treatment the risk for influence on infant seems unlikely. If, however, longer treatment is prescribed, early weaning should be considered.

Fertility
The use of ibuprofen may impair fertility and is not recommended in women attempting to conceive. In women who have difficulties conceiving or who are undergoing investigation of infertility, withdrawal of ibuprofen should be considered.

4.7 Effects on ability to drive and use machines

Following treatment with ibuprofen, the reaction time of certain patients may be affected. This should be taken into account where increased vigilance is required, e.g. when driving a car.
4.8 Undesirable effects

The undesirable effects are mainly associated with the pharmacological effect of ibuprofen on prostaglandin synthesis. The most common effects are dyspepsia and diarrhoea, which are estimated to occur in about 10–30% of treated patients.

Adverse events at least possibly related to ibuprofen are displayed by MedDRA frequency convention and system organ class database. The following frequency groupings are used: Very common (≥1/10), Common (≥1/100 to <1/10), Uncommon (≥1/1000 to <1/100), Rare (≥1/10000 to <1/1000), Very rare (<1/10,000) and Not known (cannot be estimated from the available data).

<table>
<thead>
<tr>
<th>System organ class</th>
<th>Frequency</th>
<th>Adverse reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infections and infestations</td>
<td>Uncommon</td>
<td>Rhinitis</td>
</tr>
<tr>
<td></td>
<td>Rare</td>
<td>Meningitis aseptic</td>
</tr>
<tr>
<td>Blood and lymphatic system disorders</td>
<td>Uncommon</td>
<td>Leukopenia, thrombocytopenia, agranulocytosis, aplastic anaemia and haemolytic anaemia</td>
</tr>
<tr>
<td>Immune system disorders</td>
<td>Rare</td>
<td>Anaphylactic reaction</td>
</tr>
<tr>
<td>Psychiatric disorders</td>
<td>Uncommon</td>
<td>Insomnia, anxiety</td>
</tr>
<tr>
<td></td>
<td>Rare</td>
<td>Depression, confusional state</td>
</tr>
<tr>
<td>Nervous system disorders</td>
<td>Common</td>
<td>Headache, dizziness</td>
</tr>
<tr>
<td></td>
<td>Uncommon</td>
<td>Paraesthesia, somnolence</td>
</tr>
<tr>
<td></td>
<td>Rare</td>
<td>Optic neuritis</td>
</tr>
<tr>
<td>Eye disorders</td>
<td>Uncommon</td>
<td>Visual impairment</td>
</tr>
<tr>
<td></td>
<td>Rare</td>
<td>Toxic optic neuropathy</td>
</tr>
<tr>
<td>Ear and labyrinth disorders</td>
<td>Uncommon</td>
<td>Hearing impaired</td>
</tr>
<tr>
<td></td>
<td>Rare</td>
<td>Tinnitus, vertigo</td>
</tr>
<tr>
<td>Respiratory, thoracic and mediastinal disorders</td>
<td>Uncommon</td>
<td>Asthma, bronchospasm, dyspnoea</td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td>Common</td>
<td>Dyspepsia, diarrhoea, nausea, vomiting, abdominal pain, flatulence, constipation, melaena, haematemesis, gastrointestinal haemorrhage</td>
</tr>
<tr>
<td></td>
<td>Uncommon</td>
<td>Gastritis, duodenal ulcer, gastric ulcer, mouth ulceration, gastrointestinal perforation, Pancreatitis</td>
</tr>
<tr>
<td></td>
<td>Very rare</td>
<td>Colitis and Crohn’s disease</td>
</tr>
<tr>
<td></td>
<td>Not known</td>
<td></td>
</tr>
<tr>
<td>Hepatobiliary disorders</td>
<td>Uncommon</td>
<td>Hepatitis, jaundice, hepatic function abnormal</td>
</tr>
<tr>
<td></td>
<td>Rare</td>
<td>Liver injury</td>
</tr>
<tr>
<td></td>
<td>Very rare</td>
<td>Hepatic failure</td>
</tr>
<tr>
<td>Skin and subcutaneous tissue disorders</td>
<td>Common</td>
<td>Rash</td>
</tr>
<tr>
<td></td>
<td>Uncommon</td>
<td>Urticaria, pruritus, purpura, Angioedema, photosensitivity reaction</td>
</tr>
<tr>
<td></td>
<td>Very rare</td>
<td>Bullous dermatoses, including Stevens-Johnson syndrome, toxic epidermal necrolysis and erythema multiforme</td>
</tr>
<tr>
<td>Renal and urinary disorders</td>
<td>Uncommon</td>
<td>Tubulointerstitial nephritis, nephrotic syndrome and renal</td>
</tr>
</tbody>
</table>
Clinical studies suggest that use of ibuprofen, particularly at a high dose (2400 mg/day) may be associated with a small increased risk of arterial thrombotic events (for example myocardial infarction or stroke) (see section 4.4).

Gastrointestinal ulcers, perforation or bleeding may sometimes be fatal, especially in elderly persons (see section 4.4). Ibuprofen can cause prolongation of bleeding time through reversible inhibition of platelet aggregation.

In the majority of cases where aseptic meningitis has been reported, there has been some form of underlying autoimmune disease (in particular, systemic lupus erythematosus and related connective tissue diseases).

Oedema, hypertension and heart failure as well as deterioration of ulcerative colitis and Crohn’s disease have been reported in connection with NSAID treatment.

Exceptionally, occurrence of serious cutaneous and soft tissues infectious complications during varicella.

Reporting of suspected adverse reactions
Reporting suspected adverse reactions after authorisation of the medicinal product is important. It allows continued monitoring of the benefit/risk balance of the medicinal product. Healthcare professionals are asked to report any suspected adverse reactions via the national reporting system listed in Appendix V.*

4.9 Overdose

Toxicity
Risk of symptoms at doses >80–100 mg/kg. At doses >200 mg/kg there is a risk of severe symptoms, though with considerable variations between individuals. A dose of 560 mg/kg in a child aged 15 months gave severe intoxication, 3.2 g in a 6-year-old mild to moderate intoxication, 2.8–4 g in a ½-year-old and 6 g in a 6-year-old severe intoxication, 8 g in an adult moderate intoxication and >20 g in an adult very severe intoxication. 8 g administered to a 16-year-old affected the kidney and 12 g in combination with alcohol administered to a teenager resulted in acute tubular necrosis.

Symptoms
The predominant symptoms are ones from the gastrointestinal tract, e.g. nausea, abdominal pains, vomiting (possibly blood-streaked), and headache, tinnitus, confusion and nystagmus. At high doses loss of consciousness, convulsions (mainly in children). Bradycardia, fall in blood pressure. Metabolic acidosis, hypernatraemia, kidney effects, haematuria. Possibly liver effects. Hypothermia and ARDS have occasionally been reported.

Treatment
If warranted, gastric lavage, carbon. In the event of gastrointestinal problems, antacids. In the event of hypotension intravenous fluid and if required inotropic support. Ensure adequate diuresis. Correction of acid-base and electrolyte disorders. Other symptomatic therapy.

5. PHARMACOLOGICAL PROPERTIES

5.1 Pharmacodynamic properties
Pharmacotherapeutic classification: Anti-inflammatory and antirheumatic products, nonsteroids; propionic acid derivatives.
ATC code: M01AE01
Ibuprofen belongs to the group of non-steroidal anti-inflammatory drugs (NSAIDs). It contains the propionic acid derivative p-isobutyl-hydrothropic acid with the generic name ibuprofen. Ibuprofen has anti-inflammatory, analgesic and antipyretic effects. The anti-phlogistic effect is comparable with that of aspirin and indometacin. The pharmacological effect of ibuprofen is probably associated with its ability to inhibit prostaglandin synthesis. Ibuprofen prolongs bleeding time through reversible inhibition of platelet aggregation.

Experimental data suggest that ibuprofen may competitively inhibit the effect of low dose acetylsalicylic acid on platelet aggregation when they are dosed concomitantly. Some pharmacodynamic studies show that when single doses of ibuprofen 400 mg were taken within 8 h before or within 30 min after immediate release acetylsalicylic acid dosing (81 mg), a decreased effect of acetylsalicylic acid on the formation of thromboxane or platelet aggregation occurred. Although there are uncertainties regarding extrapolation of these data to the clinical situation, the possibility that regular, long-term use of ibuprofen may reduce the cardioprotective effect of low-dose acetylsalicylic acid cannot be excluded. No clinically relevant effect is considered to be likely for occasional ibuprofen use (see section 4.5).

Ibuprofen inhibits renal prostaglandin synthesis. In patients with normal renal function this effect is of no particular significance. In patients with chronic renal insufficiency, decompensated heart or liver insufficiency as well as conditions involving changes in plasma volume, the inhibited prostaglandin synthesis can lead to acute renal insufficiency, fluid retention and heart failure (see section 4.3).

5.2 Pharmacokinetic properties

Absorption
Ibuprofen is rapidly absorbed from the gastrointestinal tract with a bioavailability of 80-90%. Peak serum concentrations occur one to two hours after administration. If administered with food, peak serum concentrations are lower and achieved more slowly than when taken on an empty stomach. Food does not affect markedly total bioavailability.

Distribution
Ibuprofen is extensively bound to plasma proteins (99%). Ibuprofen has a small volume of distribution being about 0.12-0.2 L/kg in adults.

Metabolism
Ibuprofen is rapidly metabolized in the liver through cytochrome P450, preferentially CYP2C9, to two primary inactive metabolites, 2-hydroxyibuprofen and 3-carboxyibuprofen. Following oral ingestion of the drug, slightly less than 90% of an oral dose of ibuprofen can be accounted for in the urine as oxidative metabolites and their glucuronic conjugates. Very little ibuprofen is excreted unchanged in the urine.

Elimination
Excretion by the kidney is both rapid and complete. The elimination half-life is approximately 2 hours. The excretion of ibuprofen is virtually complete 24 hours after the last dose.

Special populations

Elderly
Given that no renal impairment exists, there are only small, clinically insignificant differences in the pharmacokinetic profile and urinary excretion between young and elderly.

Children
The systemic exposure of ibuprofen following weight adjusted therapeutic dosage (5mg/kg to 10 mg/kg bodyweight) in children aged 1 year or over, appears similar to that in adults.

Children 3 months to 2.5 years appeared to have a higher volume of distribution (L/kg) and clearance (L/kg/h) of ibuprofen than did children >2.5 to 12 years of age.
Renal impairment
For patients with mild renal impairment increased unbound (S)-ibuprofen, higher AUC values for (S)-ibuprofen and increased enantiomeric AUC (S/R) ratios as compared with healthy controls have been reported.

In end-stage renal disease patients receiving dialysis the mean free fraction of ibuprofen was about 3% compared with about 1% in healthy volunteers. Severe impairment of renal function may result in accumulation of ibuprofen metabolites. The significance of this effect is unknown. The metabolites can be removed by haemodialysis (see sections 4.2, 4.3 and 4.4).

Hepatic impairment
Alcoholic liver disease with mild to moderate hepatic impairment did not result in substantially altered pharmacokinetic parameters.
In cirrhotic patients with moderate hepatic impairment (Child Pugh’s score 6-10) treated with racemic ibuprofen an average 2-fold prolongation of the half-life was observed and the enantiomeric AUC ratio (S/R) was significantly lower compared to healthy controls suggesting an impairment of metabolic inversion of (R)-ibuprofen to the active (S)-enantiomer (see sections 4.2, 4.3 and 4.4).

5.3 Preclinical safety data
There are no preclinical data of relevance for the safety assessment, apart from what has already been taken into account in this summary of product characteristics.

6. PHARMACEUTICAL PARTICULARS

6.1 List of excipients

Tablet core:
Maize starch
Microcrystalline cellulose
Crocarmellose sodium
Silica colloidal anhydrous
Sodium lauryl sulfate
Povidone K-30
Stearic acid
Talc

Film-coating:
Titanium dioxide (E171)
Lactose monohydrate
Hypromellose (2910, 15mPas, E464)
Triacetin

6.2 Incompatibilities
Not applicable.

6.3 Shelf life

2 years

After first opening of the tablet container the medicinal product should be used within 1 year.
6.4 Special precautions for storage

Do not store above 30°C.

6.5 Nature and contents of container

PVC/PVdC/aluminium foil blister packed into cardboard cartons
White HDPE bottles

600 mg
Blister: 10, 20, 24 and 30 film-coated tablets
Bottle: 24, 30, 100 and 250 film-coated tablets

Not all pack sizes may be marketed.

6.6 Special precautions for disposal <and other handling>

No special requirements.

7. MARKETING AUTHORISATION HOLDER

<[To be completed nationally]>

8. MARKETING AUTHORISATION NUMBER(S)

<[To be completed nationally]>

9. DATE OF FIRST AUTHORISATION/RENEWAL OF THE AUTHORISATION

<{DD/MM/YYYY}> <{DD month YYYYY}>

<[To be completed nationally]>

10. DATE OF REVISION OF THE TEXT

20 May 2016